Construction of Efficient Fractional Factorial Mixed-Level Designs
نویسندگان
چکیده
منابع مشابه
A Friendly Approach to Studying Aliasing Relations of Mixed Factorials in the Form of Product Arrays
Mixed-level fractional factorial designs are commonly used in industries but its aliasing relations have not been studied in full rigor. These designs take the form of a product array. Aliasing patterns of mixed level factorial designs are discussed here.
متن کاملAlgorithmic Construction of Efficient Fractional Factorial Designs With Large Run Sizes
Fractional factorial designs are widely used in practice and typically chosen according to the minimum aberration criterion. A sequential algorithm is developed for constructing efficient fractional factorial designs. A construction procedure is proposed that only allows a design to be constructed from its minimum aberration projection in the sequential build-up process. To efficiently identify...
متن کاملFitting Second-order Models to Mixed Two-level and Four-level Factorial Designs: Is There an Easier Procedure?
Fitting response surface models is usually carried out using statistical packages to solve complicated equations in order to produce the estimates of the model coefficients. This paper proposes a new procedure for fitting response surface models to mixed two-level and four-level factorial designs. New and easier formulae are suggested to calculate the linear, quadratic and the interaction coeff...
متن کاملGeneration of Fractional Factorial Designs
The joint use of counting functions, Hilbert basis and Markov basis allows to define a procedure to generate all the fractions that satisfy a given set of constraints in terms of orthogonality. The general case of mixed level designs, without restrictions on the number of levels of each factor (like primes or power of primes) is studied. This new methodology has been experimented on some signif...
متن کاملIndicator function and complex coding for mixed fractional factorial designs 1 Giovanni Pistone
In a general fractional factorial design, the n-levels of a factor are coded by the n-th roots of the unity. This device allows a full generalization to mixed-level designs of the theory of the polynomial indicator function which has already been introduced for two level designs by Fontana and the Authors (2000). the properties of orthogonal arrays and regular fractions are discussed.
متن کامل